Preprint
Article

Image Classification Using Deep and Classical Machine Learning on Small Datasets: A Complete Comparative

Altmetrics

Downloads

370

Views

600

Comments

0

This version is not peer-reviewed

Submitted:

21 January 2022

Posted:

25 January 2022

You are already at the latest version

Alerts
Abstract
One of the most important challenges in the Machine and Deep Learning areas today is to build good models using small datasets, because sometimes it is not possible to have large ones. Several techniques have been proposed in the literature to address this challenge. This paper aims at studying the different available Deep Learning techniques and performing a thorough experimentation to analyze which technique or combination thereof improves the performance and effectiveness of the models. A complete comparison with classical Machine Learning techniques was carried out, to contrast the results obtained using both techniques when working with small datasets. Thirteen algorithms were implemented and trained using three different small datasets (MNIST, Fashion MNIST, and CIFAR-10). Each experiment was evaluated using a well-established set of metrics (Accuracy, Precision, Recall, F1, and the Matthews correlation coefficient). The experimentation allowed concluding that it is possible to find a technique or combination of them to mitigate a lack of data, but this depends on the nature of the dataset, the amount of data, and the metrics used to evaluate them.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated