The current revolution in communication and information technology is facilitating the Internet of Things (IoT) infrastructure. Wireless Sensor Networks (WSN) are a broad category of IoT applications. However, power management in WSN poses a significant challenge when the WSN is required to operate for a long duration without the presence of a consistent power source. In this paper, we develop a batteryless, ultra-low-power Wireless Sensor Transmission Unit (WSTx) depending on the solar-energy harvester and LoRa technology. We investigate the feasibility of harvesting ambient indoor light using polycrystalline photovoltaic (PV) cells with a maximum power of 1.4mW. The study provides comprehensive power management design details and a description of the anticipated challenges. The power consumption of the developed WSTx was 21.09µW during the sleep mode and 11.1mW during the operation mode. The harvesting system can harvest energy up to 1.2mW per second, where the harvested energy can power the WSTx for six hours with a maximum power efficiency of 85.714%.
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.