Smartphones are prone to SMS phishing due to the rapid growth in the availability of smart mobile technologies driven by Internet connections. Also, detecting phishing SMS is a challenging task due to the unstructured nature of SMS text data with non-linear complex correlations. In this concern, considering the recent advancements in the domain of cybersecurity, we have proposed a hybrid deep learning framework that extracts robust features from SMS texts followed by an automatic detection of Phishing SMS. Due to combining the potential capability of individual models into one hybrid framework, it has outperformed various other individual machine learning and deep learning models. The proposed Phishing Detection framework is an effective hybrid combination of pretrained transformer model, MPNet (Masked and Permuted Language Modeling), with supervised ConvNets (CNN) and Bi-directional Gated Recurrent Units (GRU). It is intended to successfully detect unstructured short phishing text messages that contain complex patterns.
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.