Powder mixture with given molar ratio Ca/P = 1.67 consisting of brushite (calcium hydrophosphate dihydrate) CaHPO4·2H2O, calcium oxalate monohydrate CaC2O4·H2O in form of whewellite and weddellite and some quantity of quasi-amorphous phase was obtained as a result of the interaction of hydroxyapatite powder Ca10(PO4)6(OH)2 with an aqueous solution of oxalic acid H2C2O4 at a molar ratio of Ca10(PO4)6(OH)2/H2C2O4 = 1:4 under mechanical activation conditions. This powder mixture was used to produce microporous monophase ceramics based on hydroxyapatite Ca10(PO4)6(OH)2 with aperient density of 1.25 g/cm3 after firing at 1200 oC. Microporosity of sintered ceramics was formed due to presence of particles with plate-like morphology, restraining shrinkage during sintering. Microporous ceramics based on hydroxyapatite Ca10(PO4)6(OH)2 with roughness of the surface as a consequence of the created microporosity can be recommended as a biocompatible material for the bone defects treatment and as a substrate for bone cell cultivation.