Preprint
Review

Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review

Altmetrics

Downloads

1175

Views

271

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

24 February 2022

Posted:

28 February 2022

You are already at the latest version

Alerts
Abstract
Agricultural Big Data is a set of technologies that allows responding to the challenges of the new data era. In conjunction with machine learning, farmers can use data to address different problems such as farmers' decision-making, crops, weeds, animal research, land, food availability and security, weather, and climate change. The purpose of this paper is to synthesize the evidence regarding the challenges involved in implementing machine learning in Agricultural Big Data. We conducted a Systematic Literature Review applying the PRISMA protocol. This review includes 30 papers, published from 2015 to 2020. We develop a framework that summarizes the main challenges encountered, the use of machine learning techniques, as well as the main technologies used. A major challenge is the design of Agricultural Big Data architectures, due to the need to modify the set of technologies adapting the machine learning techniques, as the volume of data increases.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated