Preprint
Article

Aerodynamic Performance and Wake Flow of Crosswind Kite Power Systems

Altmetrics

Downloads

159

Views

223

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

02 March 2022

Posted:

03 March 2022

You are already at the latest version

Alerts
Abstract
This paper presents some results from a computational fluid dynamics (CFD) model of a multi-megawatt crosswind kite spinning on a circular path in a straight downwind configuration. The unsteady Reynolds averaged Navier-Stokes equations closed by the k−ω SST turbulence model are solved in the three-dimensional space using ANSYS Fluent. The flow behaviour is examined at the rotation plane, and the overall (or global) induction factor is obtained by getting the weighted average of induction factors on multiple annuli over the swept area. The wake flow behaviour is also discussed in some details using velocity and pressure contour plots. In addition to the CFD model, an analytical model for calculating the average flow velocity and radii of the annular wake downstream of the kite is developed. The model is formulated based on the widely-used Jensen’s model (Technical Report Risø-M; No. 2411, 1983), which was developed for conventional wind turbines, and thus has a simple form. Expressions for the dimensionless wake flow velocity and wake radii are obtained by assuming self-similarity of flow velocity and linear wake expansion. Comparisons are made between numerical results from the analytical model and those from the CFD simulation. The level of agreement was found to be reasonably good. Such computational and analytical models are indispensable for kite farm layout design and optimization, where aerodynamic interactions between kites should be considered.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated