Preprint
Article

Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object

Altmetrics

Downloads

206

Views

222

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 March 2022

Posted:

07 March 2022

You are already at the latest version

Alerts
Abstract
In surveying engineering tasks, close-range photogrammetry belongs to leading technology considering different aspects like the achievable accuracy, availability of hardware and software, accessibility to measured objects, or the economy. Hence, constant studies on photogrammetric data processing are desirable. Especially in industrial applications, the control points for close-range photogrammetry are usually measured using total stations. In the case of small objects, more precise positions of control points can be obtained by deploying and adjusting a three-dimensional linear network set up on the object. The article analyzes the accuracy of the proposed method, based on the measurement of the linear network using a tape with a precision of ±1 mm. The experiment shows that the adjusted positions of the network control points can be determined with high, one-millimeter accuracy. The photogrammetric 3D model derived referring to such control points and stereo-images captured with a non-metric camera is also characterized by the highest possible precision, which qualifies the presented method to accurate measurements used in surveying engineering. The authors prove that the distance between two randomly optional points derived from the 3D model of a dimensioned object is equal to the actual distance measured directly on it with one-millimeter accuracy.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated