Preprint
Article

Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms

Altmetrics

Downloads

412

Views

333

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

15 March 2022

Posted:

17 March 2022

You are already at the latest version

Alerts
Abstract
The Virtual Blade Model (VBM) is the implementation of the Blade element model (BEM). This was done by coupling the Blade Element Momentum theory equations to simulate rotor operation with the Reynolds Averaged Navier-Stokes (RANS) equation to simulate rotor wake and the turbulent flow field around it. Exclusion of actual geometry of blades causes lower computational cost (about 10 to 100 times). Also, due to simplifications in the meshing procedure, VBM is easier to set up than the models that consider the actual geometry of blades. One of the main unaddressed limitations of the VBM code was the constraint of modeling up to ten rotor zones within one computational domain. This paper provides a detailed and well-documented general methodology to develop a virtual blade model for simulation of ten-plus turbines within one computational domain to remove the limitation of this widely used and robust code. It is strongly believed that the technical contribution of this paper, combined with the current sky-rocketing advancement of available computational resources and hardware, would open the gates to simulate various engineering problems in the field of aerospace, clean energy, and many more.
Keywords: 
Subject: Engineering  -   Marine Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated