Preprint
Article

Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core

Submitted:

22 March 2022

Posted:

24 March 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The use of cobalt-iron (VaCoFe) core is investigated as an alternative to silicon-iron (FeSi) on the design of interior permanent magnet synchronous motors (IPMSM). A spoke-type IPMSM geometry is optimized considering FeSi and VaCoFe cores for a torque range up to 40 N.m, providing a general comparative analysis between materials, considering the application of a 4-motor competition vehicle’s powertrain. A genetic optimization algorithm is applied over a hybrid analytical/finite-element model of the motor to provide sufficiently accurate electromagnetic and thermal results within a feasible time. VaCoFe can result in an estimated increase of up to 5 % in efficiency for the same torque, or up to 64 % torque increase for the same efficiency level. After optimization, and using a detailed time-dependent model, a potential 3.2 % increase in efficiency, a core weight reduction of 4.1 %, and a decrease of 9.6 % in the motor’s core volume was found for the VaCoFe at 20 Nm. In addition, for the same motor volume, the VaCoFe allows an increase of 51.9 % of torque with an increase of 1.1 % of efficiency, when compared with FeSi.
Keywords: 
Subject: 
Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated