Preprint
Article

Rapid Detection of Anti-SARS-CoV-2 Antibodies With a Screen-Printed Electrode Modified With a Spike Glycoprotein Epitope

Altmetrics

Downloads

212

Views

218

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 March 2022

Posted:

29 March 2022

You are already at the latest version

Alerts
Abstract
The coronavirus disease of 2019, COVID-19, is caused by an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was recognized in late 2019 and has since spread worldwide leading to a pandemic with unprecedented health and financial consequences. There remains an enormous demand for new diagnostic methods that can deliver fast, low-cost, and easy-to-use confirmation of a SARS-CoV-2 infection. We have developed an affordable electrochemical biosensor for the rapid detection of serological immunoglobulin (Ig) G antibody in sera against the Spike protein. Materials and Methods: A previously identified linear B-cell epitope (EP) specific to SARS-CoV-2 spike glycoprotein and recognized by IgG in patient sera was selected for the target molecule. After synthesis, the EP was immobilized onto the surface of the working electrode of a commercially available screen-printed electrode (SPE). The capture of SARS-CoV-2 specific IgGs allowed the formation of an immunocomples that was measured by square wave voltammetry from its generation of hydroquinone (HQ). Results: An evaluation of the performance of the EP-based biosensor presented a selectivity and specificity for COVID-19 of 93% and 100%, respectively. No cross-reaction was observed to antibodies against other diseases that included Chagas disease, Chikungunya, Leishmaniosis, and Dengue. Differentiation of infected and non-infected individuals was possible even at high dilution factor that decreased the required sample volumes to a few microliters. Conclusion: The final device proved suitable for diagnosing COVID-19 assaying actual serum samples and the results displayed good agreement with the molecular biology diagnoses. The flexibility to conjugate other EPs to SPEs suggests that this technology could be rapidly adapted to diagnose new variants of SARS-CoV-2 or other pathogens.
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated