Abstract
New recurrence relations for n-balls, regular n-simplices, and n-orthoplices in integer dimensions are submitted. They remove indefiniteness present in known formulas. In negative, integer dimensions volumes of n-balls are zero if n is even, positive if n = -4k - 1, and negative if n = -4k - 3, for natural k. Volumes and surfaces of n-cubes inscribed in n-balls in negative dimensions are complex, wherein for negative, integer dimensions they are associated with integral powers of the imaginary unit. The relations are continuous for n Î ℝ and show that the constant of π is absent for 0 ≤ n < 2. For n < -1 self-dual n-simplices are undefined in negative, integer dimensions and their volumes and surfaces are imaginary in negative, fractional ones, and divergent with decreasing n. In negative, integer dimensions n-orthoplices reduce to the empty set, and their real volumes and imaginary surfaces are divergent in negative, fractional ones with decreasing n. Out of three regular, convex polytopes present in all non-negative dimensions, only n-orthoplices, n-cubes (and n-balls) are defined in negative, integer dimensions.