Preprint
Article

A Deep Learning Approach for Public Sentiment Analysis in COVID-19 Pandemic

Altmetrics

Downloads

294

Views

250

Comments

0

Submitted:

28 April 2022

Posted:

29 April 2022

You are already at the latest version

Alerts
Abstract
Sentiment analysis is a process of extracting opinions into the positive, negative, or neutral categories from a pool of text using Natural Language Processing (NLP). In the recent era, our society is swiftly moving towards virtual platforms by joining virtual communities. Social media such as Facebook, Twitter, WhatsApp, etc are playing a very vital role in developing virtual communities. A pandemic situation like COVID-19 accelerated people's involvement in social sites to express their concerns or views regarding crucial issues. Mining public sentiment from these social sites especially from Twitter will help various organizations to understand the people's thoughts about the COVID-19 pandemic and to take necessary steps as well. To analyze the public sentiment from COVID-19 tweets is the main objective of our study. We proposed a deep learning architecture based on Bidirectional Gated Recurrent Unit (BiGRU) to accomplish our objective. We developed two different corpora from unlabelled and labeled COVID-19 tweets and use the unlabelled corpus to build an improved labeled corpus. Our proposed architecture draws a better accuracy of 87% on the improved labeled corpus for mining public sentiment from COVID-19 tweets.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated