Preprint
Article

Microbial Consortia and Mixed Plastic Waste: Pangenomic Analysis Reveals Potential for Degradation of Multiple Plastic Types via Previously Identified PET Degrading Bacteria

Altmetrics

Downloads

351

Views

438

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 April 2022

Posted:

30 April 2022

You are already at the latest version

Alerts
Abstract
Global use of single-use non-biodegradable plastics, like bottles made of polyethylene tereph-thalate (PET), have contributed to catastrophic levels of plastic pollution. Fortunately, microbi-al communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches we identified key genes implicated in PET degradation within the consortium’s pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, discovered to hydrolyze oligomer BHET, and polymer PET. Besides genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degrada-tion related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based as-say, which paired with an abundant number of plastic and plasticizer degrading enzymes in-dicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer me-tabolism was also observed, including the generation of polyhydroxyalkanoate (PHA) bi-opolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential.
Keywords: 
Subject: Biology and Life Sciences  -   Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated