A peer-reviewed article of this preprint also exists.
Abstract
This study develops into the application of a combined MFC unit with chemical coagulation for total treatment of inert contaminants in complex substrates. Microbial Fuel Cell (MFC) technology converts chemical energy in the form of organic matter, into bioelectricity in an environmentally friendly and effi-cient manner, reducing carbon emissions and increasing bioenergy production. An evaluation of a la-boratory scale chemical coagulation using an aluminum and poly-based coagulant on how effective it can remove bulk impurities such as particulate COD and turbidity to obtain the purest and most cost-effectively treated wastewater using a jar test is being conducted in this current study. This study aims to find the most effective treatment technologies for wastewater recovery in breweries in order to achieve zero liquid effluent discharge (ZLED). The preliminary results showed that adding a modest amount of poly and a 50 % alum alone treatment improved COD, color, and turbidity reduction. The turbidity removal efficiency achieved after chemical coagulation treatment was 90.50 % and 59.36 % COD removal, demonstrating the benefits of adopting an alum/poly based technique. To determine ZLED, this study clearly advised a combined treatment technique, specifically the MFC-flocculator unit for efficient organics and inorganics removal.
Keywords:
Subject:
Engineering - Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.