Preprint
Article

The Effect of Entrapment Within SOL-Gel Magnetite on Carbonic Anhydrase

Altmetrics

Downloads

151

Views

174

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

07 May 2022

Posted:

10 May 2022

You are already at the latest version

Alerts
Abstract
Enzymatically active nanocomposites are a perspective class of bioactive materials that finds their application in numerous fields of science and technology ranging from biosensors and therapeutic agents to industrial catalysts. Key properties of such systems are their stability and activity under various conditions, the problems that are addressed in any research devoted to this class of materials. Сomprehension ща the principles that affect these properties play the most important role in the development of the field, especially when it takes to a new class of bioactive systems. Recently, a new class of enzymatically doped magnetite-based sol-gel systems emerged and paved the way for a variety of potent bioactive magnetic materials with improved thermal stability. Such systems already showed themself as perspective industrial and therapeutic agents, but are still under intense investigation and many aspects are still unclear. Here we made a first attempt to describe the interaction of biomolecules with magnetite-based sol-gel materials and to investigate facets of protein structure rearrangements occurring within the pores of magnetite sol-gel matrix using dedicate Fourier-transform infrared spectroscopy.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated