Interpretation of Time-Varying Radio Emissions of SgrA* Observed by 1.3 Millimeter-Wavelength VLBI ---with Parameters of The Super-Massive Black Hole Binary at SgrA* Based on Decameter Radio Wave Pulse Observations
In 2011, by 1.3 mm wavelength VLBI radio wave observations of the SgrA*, Fish, V. L. et al showed that the emissions tightly related to the formation of a black hole shadow have a remarkably large time-varying feature within a region of less than 50 μas. The present paper suggests that the origin of the time variation in the observed emission is due to effects of the orbital motion of the existing super-massive black hole binary orbiting at SgrA* with a period of 2150±2.5 s. This suggestion is based on observations of decameter radio wave pulses from SgrA*. We show a good correlation between the time variation in the coherent flux density of the VLBI results and the time variation model of estimated emission intensities based on the periodic motion of the super-massive black hole binary by applying parameters deduced from the decameter radio wave pulse observation model (DRWP-Model). With further confirmation by Fourier analyses of the potential periodicity of the VLBI data that show the same periods of DRWP Model, we conclude that the time variation detected by the 1.3 mm wavelength radio wave VLBI is evidence of an existing super-massive black hole at Sgr A*.
Keywords:
Subject: Physical Sciences - Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.