Preprint
Article

Thermal Integrity Analysis of a Raft Concrete Foundation: A Case Study of a Leaking Ethane Tank

Altmetrics

Downloads

205

Views

222

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 May 2022

Posted:

16 May 2022

You are already at the latest version

Alerts
Abstract
This article presents a case study on the structural assessment of a reinforced concrete (RC) foundation exposed to low temperatures. The foundation supports a 19,500 m³-capacity tank with low-temperature (-89°C) ethane. Icing and bubbling were observed on the tank’s surface soon after it started operations. Condensation was also observed at the bottom of the 0.8 m-depth RC slab, which raised concerns about the structural condition of the concrete. This study provides details of the field and analytical investigations conducted to assess the structural condition of the foundation. Heat transfer finite element (FE) analyses were performed to examine the concrete sections subjected to low temperatures. It was found that the ethane leakage produced a low temperature on the top side of the concrete foundation of +9.7°C. Overall, the temperatures calculated by the FE analyses were in good agreement with actual field measurements, within a ±5% accuracy. The simplified heat transfer equation for porous media used in this study was sufficiently accurate to model the effects of the ethane leakage in the concrete foundation, provided the ambient temperature at the site is taken into account in the analysis. The results also confirm that reinforcing bars can be neglected in the thermal analysis of massive concrete slabs. The results from the field measurements and FE analyses confirmed that the structural integrity of the RC foundation was never compromised. The approaches, methods and techniques discussed in this article are deemed suitable to solve the practical and scientific challenges involved in the structural assessment and repairs of large special structures. Accordingly, they can serve as useful reference and guidance for engineers and practitioners working in the field of forensic engineering.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated