In engineering, connections between components are often weak areas. Unreasonable connection methods can easily reduce the strength of components, resulting in unpredictable failure modes. In nature, numerous connection methods for biological structures with excellent mechanical properties have evolved. Studying the connection methods of organisms in nature can inspire new ideas for bionic connection methods. When the diabolical ironclad beetle is under pressure, the elytra are not easy to separate, which ensures the stability of the beetle's external structure, thus making the beetle extremely resistant to pressure. The reason for this is the interlocking and toughening effect of the unique jigsaw connection between the elytra. Therefore, in this paper a theoretical analysis model is established and used to analyze the mechanical behavior of the diabolical ironclad beetle's jigsaw connection during the drawing process and determine the influence of factors such as quantity, angle, and geometric characteristics on the mechanical properties of the jigsaw connection. The results of the theoretical analysis are then compared with the results of experiments and ABAQUS finite element simulation.
Keywords:
Subject: Physical Sciences - Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.