This paper discusses a means of making an extremely bright path entangled source. An initial laser source is preferred but any source of light: LED, sub-critical laser, coherent or thermal can be used. The light is dimmed by a beam expander until the relative number of |1> or |2> photons increases compared to higher photon states. The expanded beam is then passed through a 1:1 beamsplitter to generate path entanglement on the |1> and |2> photons. A further stage of “purification” can remove the non-entangled higher states by passing the output beams from the beamsplitter through one another, such that the correlated entangled photon electrical fields cancel in some region. In the said region, the uncorrelated non-entangled fields can be Faraday rotated and then absorbed by a polariser. The entangled photons pass through the region without rotation and attenuation. The output from the device then has copious quantities of 1 and 2 photon path entangled suitable for use in telecommunications engineering, secure transmission of data and quantum metrology. The wide beams can be beam-contracted to a thin bright beam and will keep the path entanglement of individual photons, as photons are bosons and so don’t interact, furthermore, all operations are unitary and linear, as by Maxwell’s equations.
Keywords:
Subject: Physical Sciences - Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.