Preprint
Article

An Ensemble Transfer Learning Spiking Immune System for Adaptive Smart Grid Protection

Altmetrics

Downloads

277

Views

328

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 June 2022

Posted:

06 June 2022

You are already at the latest version

Alerts
Abstract
The rate of technical innovation, system interconnection, and advanced communications undoubtedly boost distributed energy networks' efficiency. However, when an additional attack surface is made available, the possibility of an increase in attacks is an unavoidable result. The energy ecosystem's significant variety draws attackers with various goals, making any critical infrastructure a threat, regardless of scale. Outdated technology and other antiquated countermeasures that worked years ago cannot address the complexity of current threats. As a result, robust artificial intelligence cyber-defense solutions are more important than ever. Based on the above challenge, this paper proposes an ensemble transfer learning spiking immune system for adaptive smart grid protection. It is an innovative Artificial Immune System (AIS) that uses a swarm of Evolving Izhikevich Neural Networks (EINN) in an Ensemble architecture, which optimally integrates Transfer Learning methodologies. The effectiveness of the proposed innovative system is demonstrated experimentally in multiple complex scenarios that optimally simulate the modern energy environment. In this way, the proposed system fully automates the strategic security planning of energy networks with computational intelligence methods. It allows the complete control of the digital strategies of the potential infrastructure that frames it, thus contributing to the timely and valid decision-making during cyber-attacks.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated