Preprint
Data Descriptor

A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave

Altmetrics

Downloads

399

Views

344

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 July 2022

Posted:

21 July 2022

You are already at the latest version

Alerts
Abstract
The COVID-19 Omicron variant, reported to be the most immune evasive variant of COVID-19, is resulting in a surge of COVID-19 cases globally. This has caused schools, colleges, and universities in different parts of the world to transition to online learning. As a result, social media platforms such as Twitter are seeing an increase in conversations related to online learning. Mining such conversations, such as Tweets, to develop a dataset can serve as a data resource for interdisciplinary research related to the analysis of interest, views, opinions, perspectives, attitudes, and feedback towards online learning during the current surge of COVID-19 cases caused by the Omicron variant. Therefore this work presents a large-scale public Twitter dataset of conversations about online learning since the first detected case of the COVID-19 Omicron variant in November 2021. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter, as well as with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management. The paper also briefly outlines some potential applications in the fields of Big Data, Data Mining, Natural Language Processing, and their related disciplines, with a specific focus on online learning during this Omicron wave that may be studied, explored, and investigated by using this dataset.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated