Preprint
Article

Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-protein

Altmetrics

Downloads

215

Views

214

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 June 2022

Posted:

14 June 2022

You are already at the latest version

Alerts
Abstract
Background: Night-migratory birds sense the Earth´s magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that light-induced formation of a radical-pair in European robin cryptochrome 4a, ErCry4a, is the primary signalling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signalling involving the α-subunit of the cone specific heterotrimeric G protein from European robin. Methods: Protein-protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. Results: Surface plasmon resonance studies showed direct interaction revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. Conclusions: Our results suggest that ErCry4a and the G protein also interact in vivo and might constitute the first biochemical signalling step in radical-pair-based magnetoreception.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated