Preprint
Article

MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Waves

Altmetrics

Downloads

214

Views

248

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 June 2022

Posted:

17 June 2022

You are already at the latest version

Alerts
Abstract
Structural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, we have developed a robust MEMS vibrometer that can be integrated with structural and functional compliance. This vibrometer is directly sensitive to the high-frequency displacements from structure-borne ultrasound when excited between its first and second natural frequency. The vibrometer is mostly realized by processes earlier developed for a pressure sensor but with additional femtosecond laser ablation and wafer bonding. The piezoresistive transducer made from silicon is encapsulated between top and bottom glass lids. The natural frequencies are experimentally determined using an optical micro vibrometer setup. The vibrometer functionality and usability for structural health monitoring are demonstrated on a customized test rig by recording application-relevant guided ultrasonic wave packages with a central frequency of 100 kHz at a distance of 200 mm from the exciting ultrasound transducer.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated