Preprint
Review

Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications

Altmetrics

Downloads

254

Views

213

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 June 2022

Posted:

17 June 2022

You are already at the latest version

Alerts
Abstract
All living organisms require some metal ions for their energy production as well as metabolic and biosynthetic processes. Within cells, metal ions are involved in the formation of adducts interact with metabolites and macromolecules (proteins and nucleic acids). The proteins that require binding to one or more metal ions to be able to carry out their physiological function are called metalloproteins. About one third of all protein structures in the Protein Data Bank involve metalloproteins. Over the past few years there has been a tremendous progress in the number of computational tools and techniques making use of 3D structural information to support the investigation of metalloproteins. This trend has been boosted also by the successful applications of neural networks and deep learning approaches in molecular and structural biology at large. In this review, we discuss recent advances in the development and availability of resources dealing with metalloproteins from a structure-based perspective. We start by addressing tools for the prediction of metal-binding sites (MBSs) using structural information on apo-proteins. Then, we provide an overview of methods for and lessons learned from the structural comparison of MBSs in a fold-independent manner. We then move to describing databases of metalloprotein/MBS structures. Finally, we summarize recent DL applications enhancing the functional interpretation of metalloprotein structures.
Keywords: 
Subject: Biology and Life Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated