Preprint
Article

Parametric Vine Copula Framework in the Trivariate Probability Analysis of Compound Flooding Events

Altmetrics

Downloads

186

Views

151

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 June 2022

Posted:

20 June 2022

You are already at the latest version

Alerts
Abstract
The interaction between oceanographic, meteorological, and hydrological factors can result in an extreme flooding scenario in the low-lying coastal area, called compound flooding (CF) events. For instance, rainfall and storm surge (or high river discharge) can be driven by the same meteorological, tropical or extra-tropical cyclones, resulting in a CF phenomenon. The trivariate distributional framework can significantly explain compound events' statistical behaviour reducing the associated high-impact flood risk. Resolving heterogenous dependency of the multidimensional CF events by incorporating traditional 3-D symmetric or fully nested Archimedean copula is quite complex. The main challenge is to preserve all lower-level dependencies. An approach based on decomposing the full multivariate density into simple local building blocks via conditional independence called vine or pair-copulas is a much more comprehensive way of approximating the trivariate flood dependence structure. In this study, a parametric vine copula of a drawable (D-vine) structure is introduced in the trivariate modelling of flooding events with 46 years of observations of the west Coast of Canada. This trivariate framework searches dependency by combining the joint impact of annual maximum 24-hr rainfall and the highest storm surge and river discharge observed within the time ±1 day of the highest rainfall event. The D-vine structures are constructed in three alternative ways by permutation of the conditioning variables. The most appropriate D-vine structure is selected using the fitness test statistics and estimating trivariate joint and conditional joint return periods. The investigation confirms that the D-vine copula can effectively define the compound phenomenon's dependency. The failure probability (FP) method is also adopted in assessing the trivariate hydrologic risk. It is observed that hydrologic events defined in the trivariate case produce higher FP than in the bivariate (or univariate) case. It is also concluded that hydrologic risk increases (i) with an increase in the service design life of the hydraulic facilities and (ii) with a decrease in return periods.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated