Preprint
Article

Novel Multi Epitope-based Vaccine against Monkeypox Virus: Vaccinomic approach

Altmetrics

Downloads

678

Views

698

Comments

0

Submitted:

28 June 2022

Posted:

29 June 2022

You are already at the latest version

Alerts
Abstract
Background: While mankind is still dealing with the COVID-19 pandemic, on May 7, 2022, a case of monkeypox virus (MPXV) has been reported to the WHO. Monkeypox is a viral zoonotic disease with characteristics comparable to those seen in smallpox cases in the past. It has been a public health threat, particularly in Africa, but recently have been circulating the world, consequently, may become a global public health threat in a very short period. Thus, the current work was planned and then constructed a multi-epitope vaccine that can evoke an immunological response against MPXV utilizing cell surface-binding protein as a target in order to develop a novel vaccine that is both safe and almost free of side effects. Results: The proposed vaccine composed of 304 amino acids and was shown to be antigenic in Vaxijen server (0. 5311) and nonallergenic in AllerTop server. The 3D structure of the designed vaccine is predicted, refined and validated by various in silico tools to assess the stability of the vaccine. Moreover, solubility of the vaccine construct was found greater than the average solubility provided by protein-Sol server indicating the solubility of the vaccine construct. Moreover, the most promising epitopes bound to MHC I and MHC II alleles were found having good binding affinities with low energies ranging between ₋7.0 - ₋8.1kcal/mol. Conclusion: We conclude from our research that the cell surface-binding protein is one of the primary proteins involved in MPXV pathogenesis. The most promising epitopes were selected using a rigorous procedure and used for vaccine design. As a result, our study will aid in the development of appropriate therapeutics and prompt the development of future vaccines against MPXV, which could serve as an important milestone in the production of an antiviral vaccine against MPXV.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated