You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Abnormal in LMNA Triggers a Shift in Intracellular Metabolic Homeostasis Via AMPK Activation

Altmetrics

Downloads

251

Views

140

Comments

0

Submitted:

14 July 2022

Posted:

18 July 2022

You are already at the latest version

Alerts
Abstract
Laminopathies are a spectrum of diseases caused by LMNA mutations. In familial partial lipodystrophy of Dunnigan (FPLD), LMNA plays role in the differentiation and development of adipocytes and lipid metabolism. Changes in LMNA predict not only the differentiation of adipose-derived mesenchymal stem cells (AD-MSCs) but also the transformation of cancer cells. Hence, our in-depth study aimed to identify the molecular connection between disordered lipid metabolism and hepatic carcinogenesis. We first discovered significant positive correlations between pLMNA and two key rate-limiting enzymes in de novo fatty acid synthesis, acetyl-CoA-carboxylase 1 (ACC1) and fatty acid synthase (FASN), in the liver tissue but not in adipose tissue of obese model rats. Moreover, LMNA knockdown (KD) in rat AD-MSCs prevented the differentiation and maturation of adipocytes. To clarify the mechanistic relationship with lipogenesis, gain- and loss-of-function experiments in which functional changes and the related molecular pathways were investigated in a normal hepatocyte line (7701 cells). Adenosine 5'-monophosphate activated protein kinase α (AMPKα) was found to be activated by abnormalities in the LMNA structure under conditions of LMNA deletion, farnesyltransferase inhibitor (FTI) treatment and LMNA mutations associated with clinical FPLD pathogenic phenotype. Active AMPKα could directly phosphorylate ACC1 and thus inhibit lipid synthesis but induced glycolysis in both HCC cells and normal cells. The HCC cells could not survive with LMNA knockout (KO) or even KD. Lonafarnib (an FTI) combined with low-glucose conditions significantly decreased the proliferation of HepG2 and MHCC cells by inhibiting glycolysis and the maturation of prelamin A.
Keywords: 
Subject: Medicine and Pharmacology  -   Oncology and Oncogenics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated