Preprint
Article

Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate

Altmetrics

Downloads

167

Views

172

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 July 2022

Posted:

19 July 2022

You are already at the latest version

Alerts
Abstract
Gene electrotransfer is one of the main non-viral methods for intracellular delivery of plasmid DNA, wherein pulsed electric fields are used to transiently permeabilize the cell membrane allowing enhanced transmembrane transport. By localizing the electric field over small portions of the cell membrane using nanostructured substrates, it is possible to increase considerably the gene electrotransfer efficiency while preserving cell viability. In this study, we design an electrotransfer approach based on commercially available cell culture inserts with polyethylene-terephthalate (PET) porous substrate. We first use multiscale numerical modelling to determine the pulse parameters, substrate pore size, and other factors that are expected to result in successful gene electrotransfer. Based on numerical results we design a simple device combining an insert with substrates containing pores with 0.4 um and 1.0 um diameter, a multiwell plate, and a pair of wire electrodes. We test the device in three mammalian cell lines and obtain transfection efficiencies similar to those achieved with bulk electroporation, but with low-voltage pulses that do not require the use of expensive electroporators. Our combined theoretical and experimental analysis calls for further systematic studies that will investigate the influence of substrate pore size and porosity on gene electrotransfer efficiency and cell viability.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated