Preprint
Article

Low Complexity, Low Probability Patterns and Consequences for Algorithmic Probability Applications

Altmetrics

Downloads

156

Views

138

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 July 2022

Posted:

21 July 2022

You are already at the latest version

Alerts
Abstract
Developing new ways to estimate probabilities can be valuable for science, statistics, and engineering. By considering the information content of different output patterns, recent work invoking algorithmic information theory has shown that a priori probability predictions based on pattern complexities can be made in a broad class of input-output maps. These algorithmic probability predictions do not depend on a detailed knowledge of how output patterns were produced, or historical statistical data. Although quantitatively fairly accurate, a main weakness of these predictions is that they are given as an upper bound on the probability of a pattern, but many low complexity, low probability patterns occur, for which the upper bound has little predictive value. Here we study this low complexity, low probability phenomenon by looking at example maps, namely a finite state transducer, natural time series data, RNA molecule structures, and polynomial curves. Some mechanisms causing low complexity, low probability behaviour are identified, and we argue this behaviour should be assumed as a default in the real world algorithmic probability studies. Additionally, we examine some applications of algorithmic probability and discuss some implications of low complexity, low probability patterns for several research areas including simplicity in physics and biology, a priori probability predictions, Solomonoff induction and Occam's razor, machine learning, and password guessing.
Keywords: 
Subject: Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated