A simple undirected graph $\Gamma=(V_\Gamma,E_\Gamma)$ admits an $H$-covering if every edge in $E_\Gamma$ belongs to at least one subgraph of $\Gamma$ that isomorphic to a graph $H$. For any graph $\Gamma$ admitting $H$-covering, a total Labelling $\beta: V_\Gamma \cup E_\Gamma \longrightarrow \{1,2,\dots,p\}$ is called an $H$-irregular total $p$-labelling of $\Gamma$ if every two different subgraphs $H_1$ and $H_2$ of $\Gamma$ isomorphic to $H$ have distinct weights where the weight $w_\beta(K)$ of subgraph $K$ of $\Gamma$ is defined as $w_f(K):=\displaystyle \sum_{v\in V_K} f(v) + \sum_{e\in E_K} f(e)$. The smallest number $p$ for which a graph $\Gamma$ admits an $H$-irregular total $p$-labelling is called the total $H$-irregularity strength of $\Gamma$ and is denoted by $ths(\Gamma)$. In this paper, we determine the total $H$-irregularity strength of edge comb product of two graphs.
Keywords:
Subject: Computer Science and Mathematics - Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.