The growing amount of data demands methods that can gradually learn from new samples. However, it is not trivial to continually train a network. Retraining a network with new data usually results in a known phenomenon, called “catastrophic forgetting.” In a nutshell, the performance of the model drops on the previous data by learning from the new instances. This paper explores this issue in the table detection problem. While there are multiple datasets and sophisticated methods for table detection, the utilization of continual learning techniques in this domain was not studied. We employed an effective technique called experience replay and performed extensive experiments on several datasets to investigate the effects of catastrophic forgetting. Results show that our proposed approach mitigates the performance drop by 15 percent. To the best of our knowledge, this is the first time that continual learning techniques are adopted for table detection, and we hope this stands as a baseline for future research.
Keywords:
Subject: Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.