We present an integrable, sensor inlay for monitoring crack initiation and growth inside bondlines of structural carbon fiber reinforced plastic (CFRP) components. The sensing structures are sandwiched between crack stopping polyvinyliden fluoride (PVDF) and a thin reinforcing polyetherimide (PEI) layer. Good adhesion at all interfaces of the sensor system and to the CFRP material is crucial as weak bonds can counteract the desired crack stopping functionality. At the same time, the chosen reinforcing layer must withstand high strains, safely support the metallic measuring grids and possess outstanding fatigue strength. We show that this robust sensor system, which measures the strain at two successive fronts inside the bondline, allows to recognize cracks in the proximity of the inlay regardless of the mechanical loads. Feasibility is demonstrated by static load tests as well as cyclic long-term fatigue testing with up to 1,000,000 cycles. In addition to pure crack detection, crack distance estimation based on sensor signals is illustrated. The inlay integration process is developed with respect to industrial applicability. Thus, implementation of the proposed system will allow the potential of lightweight CFRP constructions to be better exploited by expanding the possibilities of structural adhesive bonding.
Keywords:
Subject: Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.