The article is devoted to algebraic modeling of universal rules of stochastic organization of genomic DNA of higher and lower organisms, previously published by the author. The proposed algebraic apparatus, which uses formalisms of quantum mechanics and quantum informatics and which is based on the so-called tensor-unitary transformations of vectors that generate families of interrelated stochastic-deterministic vectors of increased dimensions. The features of the vectors' interconnections in these families model the stochastic-deterministic properties of the named phenomenological rules. There are new approaches to modeling of developing multi-parameter biosystems, whose number of parameters increases in the course of step-by-step development. In the light of the presented materials, the issues of fractal-like organization in genetically inherited biosystems are considered. The development of the theory of stochastic determinism as an antipode of deterministic chaos is discussed.