Preprint
Article

Employing a Multilingual Transformer Model for Segmenting Unpunctuated Arabic Text

Altmetrics

Downloads

253

Views

108

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 August 2022

Posted:

26 August 2022

You are already at the latest version

Alerts
Abstract
Long unpunctuated texts containing complex linguistic sentences are a stumbling block to processing any low-resource languages. Thus, approaches that attempt to segment lengthy texts with no proper punctuation into simple candidate sentences are a vitally important preprocessing task in many hard-to-solve NLP applications. In this paper, we propose (PDTS) a punctuation detection approach for segmenting Arabic text, built on top of a multilingual BERT-based model and some generic linguistic rules. Furthermore, we showcase how PDTS can be effectively employed as a text tokenizer for unpunctuated documents (i.e., mimicking the transcribed audio-to-text documents). Experimental findings across two evaluation protocols (involving an ablation study and a human-based judgment) demonstrate that PDTS is practically effective in both performance quality and computational cost.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated