Preprint
Article

Non-Archimedean Welch Bounds and Non-Archimedean Zauner Conjecture

Altmetrics

Downloads

130

Views

95

Comments

0

This version is not peer-reviewed

Submitted:

27 August 2022

Posted:

29 August 2022

You are already at the latest version

Alerts
Abstract
Let $\mathbb{K}$ be a non-Archimedean (complete) valued field satisfying \begin{align*} \left|\sum_{j=1}^{n}\lambda_j^2\right|=\max_{1\leq j \leq n}|\lambda_j|^2, \quad \forall \lambda_j \in \mathbb{K}, 1\leq j \leq n, \forall n \in \mathbb{N}. \end{align*} For $d\in \mathbb{N}$, let $\mathbb{K}^d$ be the standard $d$-dimensional non-Archimedean Hilbert space. Let $m \in \mathbb{N}$ and $\text{Sym}^m(\mathbb{K}^d)$ be the non-Archimedean Hilbert space of symmetric m-tensors. We prove the following result. If $\{\tau_j\}_{j=1}^n$ is a collection in $\mathbb{K}^d$ satisfying $\langle \tau_j, \tau_j\rangle =1$ for all $1\leq j \leq n$ and the operator $\text{Sym}^m(\mathbb{K}^d)\ni x \mapsto \sum_{j=1}^n\langle x, \tau_j^{\otimes m}\rangle \tau_j^{\otimes m} \in \text{Sym}^m(\mathbb{K}^d)$ is diagonalizable, then \begin{align}\label{WELCHNONABSTRACT} \max_{1\leq j,k \leq n, j \neq k}\{|n|, |\langle \tau_j, \tau_k\rangle|^{2m} \}\geq \frac{|n|^2}{\left|{d+m-1 \choose m}\right| }. \end{align} We call Inequality (\ref{WELCHNONABSTRACT}) as the non-Archimedean version of Welch bounds obtained by Welch [\textit{IEEE Transactions on Information Theory, 1974}]. We formulate non-Archimedean Zauner conjecture.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated