Preprint
Article

Development and Testing of an Integrated Energy-Efficient Vehicle Speed and Traffic Signal Controller

Altmetrics

Downloads

211

Views

46

Comments

0

This version is not peer-reviewed

Submitted:

03 September 2022

Posted:

05 September 2022

You are already at the latest version

Alerts
Abstract
This paper develops a two-layer optimization approach that provides energy-optimal control for vehicles and traffic signal controllers. The optimizer in the first layer computes the traffic signal timings to minimize the total energy consumption levels of approaching vehicles from upstream traffic. The traffic signal optimization can be easily implemented in real-time signal controllers, and it overcomes the issues in the traditional Webster’s method of overestimating the cycle length when the traffic volume-to-capacity ratio exceeds 50 percent. The second layer optimizer is the vehicle speed controller, which calculates the optimal vehicle brake and throttle levels to minimize the energy consumption of individual vehicles. The A-star dynamic programming is used to solve the formulated optimization problem in the second layer to expedite the computation speed so that the optimal vehicle trajectories can be computed in real-time and can be easily implemented in simulation software for testing. The proposed integrated controller is first tested on an isolated signalized intersection, and then an arterial network with multiple intersections to investigate the performance of the proposed controller under various traffic demand levels. The test results demonstrate that the proposed integrated controller can greatly improve energy efficiency with fuel savings up to 17.7%, at the same time enhancing traffic mobility by up to 47.18% reduction in traffic delay and up to 24.84% reduction in vehicle stops.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated