Preprint
Review

Opportunities and Hurdles to the Adoption and Enhanced Efficacy of Feed Additives Towards Pronounced Mitigation of Enteric Methane Emissions

Altmetrics

Downloads

293

Views

80

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

02 September 2022

Posted:

05 September 2022

You are already at the latest version

Alerts
Abstract
This paper analyzes the mitigation of enteric methane (CH4) emissions from ruminants with the use of feed additives inhibiting of rumen methanogenesis to limit global temperature increase to 1.5 °C. A mathematical simulation conducted herein predicted that pronounced inhibition of rumen methanogenesis with pure chemicals or bromoform-containing algae can contribute to limit global temperature increase by 2050 to 1.5 °C only if widely adopted at a global level and considering an efficacy higher than obtained in most studies. Currently, the most important limitations to the adoption of antimethanogenic feed additives are probably increased feeding cost without a consistent return in production efficiency, and achieving sustained delivery of inhibitors to the rumens of non-supplemented, extensively ranging animals. Economic incentives, and changes in rumen microbial metabolism caused by inhibiting methanogenesis, could potentially be used to make the methanogenesis inhibition intervention cost effective. Also, the composition of the methanogenic community, and rate of disappearance of inhibitors of methanogenesis in the rumen can influence the effective dose of the inhibitors, and hence the cost of their adoption. Possible means for sustained delivery of antimethanogenic compounds to extensively grazing animals are discussed. Limitations and knowledge gaps of these approaches, and future research directions, are examined.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated