Preprint
Article

WCNN3D: Wavelet Convolutional Neural Network Based 3D Object Detection for Autonomous Driving

Altmetrics

Downloads

186

Views

83

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

01 September 2022

Posted:

05 September 2022

You are already at the latest version

Alerts
Abstract
3D object detection is crucial for autonomous driving to understand the driving environment. Since the pooling operation causes information loss in the standard CNN, we have designed a wavelet multiresolution analysis-based 3D object detection network without a pooling operation. Additionally, instead of using a single filter like the standard convolution, we use the lower-frequency and higher-frequency coefficients as a filter. These filters capture more relevant parts than a single filter, enlarging the receptive field. The model comprises a discrete wavelet transform (DWT) and an inverse wavelet transform (IWT) with skip connections to encourage feature reuse for contrasting and expanding layers. The IWT enriches the feature representation by fully recovering the lost details during the downsampling operation. Element-wise summation is used for the skip connections to decrease the computational burden. We train the model for the Haar and Daubechies (Db4) wavelets. The two-level wavelet decomposition result shows that we can build a lightweight model without losing significant performance. The experimental results on the KITTI’s BEV and 3D evaluation benchmark show our model outperforms the Pointpillars base model by up to 14 \% while reducing the number of trainable parameters. Code will be released.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated