Preprint
Article

This version is not peer-reviewed.

Numerical Simulation of the Elastic-Ideal Plastic Material Behavior of Short Fiber-Reinforced Composites Including Its Spatial Distribution with an Experimental Validation

A peer-reviewed article of this preprint also exists.

Submitted:

31 August 2022

Posted:

06 September 2022

You are already at the latest version

Abstract
For the numerical simulation of components made of short fiber-reinforced composites the correct prediction of the deformation including the elastic and plastic behavior and its spatial distribution is essential. When using purely deterministic modeling approaches the information of the probabilistic microstructure is not included in the simulation process. One possible approach for the integration of stochastic information is the use of random fields. In this study numerical simulations of tensile test specimens are conducted utilizing a finite deformation elastic-ideal plastic material model. A selection of the material parameters covering the elastic and plastic domain are represented by cross-correlated second-order Gaussian random fields to incorporate the probabilistic nature of the material parameters. To validate the modeling approach tensile tests until failure are carried out experimentally, that confirm the assumption of spatially distributed material behavior in both the elastic and plastic domain. Since the correlation lengths of the random fields cannot be determined by pure analytic treatments, additionally numerical simulations are performed for different values of the correlation length. The numerical simulations endorse the influence of the correlation length on the overall behavior. For a correlation length of 5mm a good conformity with the experimental results is obtained. Therefore, it is concluded, that the presented modeling approach is suitable to predict the elastic and plastic deformation of a set of tensile test specimens made of short fiber-reinforced composite sufficiently.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated