Preprint
Article

Ensemble Weighting Strategy For Federated Learning To Handle Heterogeneous Data Distributions

Altmetrics

Downloads

170

Views

101

Comments

0

This version is not peer-reviewed

Submitted:

27 September 2022

Posted:

28 September 2022

You are already at the latest version

Alerts
Abstract
Increasingly measured data in the context of smart cities can be used to develop new and innovative business models to increase efficiency and the value of life. A time-series classification algorithm can support to automatize many different processes such as forecasting services. In order to ensure data security and privacy, Federated Learning trains a global model collaboratively on multiple clients. Having different data-distributions and data-quantities across participating clients, neural networks suffer from slow convergence and overfitting. Based on different data-distributions, data-quantities and number of clients, we develop and evaluate different data-clustering strategies to update global model weights in comparison to the state of the art. We use public time-series data, generate various synthetic datasets and train a Relational-Regularized Autoencoder for classification purposes. Our results show an improvement of model performance concerning generalization.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated