Increasingly measured data in the context of smart cities can be used to develop new and innovative business models to increase efficiency and the value of life. A time-series classification algorithm can support to automatize many different processes such as forecasting services. In order to ensure data security and privacy, Federated Learning trains a global model collaboratively on multiple clients. Having different data-distributions and data-quantities across participating clients, neural networks suffer from slow convergence and overfitting. Based on different data-distributions, data-quantities and number of clients, we develop and evaluate different data-clustering strategies to update global model weights in comparison to the state of the art. We use public time-series data, generate various synthetic datasets and train a Relational-Regularized Autoencoder for classification purposes. Our results show an improvement of model performance concerning generalization.
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.