Preprint
Article

Wavelet Long Short-Term Memory to Fault Forecasting in Electrical Power Grids

Altmetrics

Downloads

188

Views

48

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 September 2022

Posted:

03 October 2022

You are already at the latest version

Alerts
Abstract
The electric power distribution utility is responsible for providing energy to consumers in a continuous and stable way, failures in the electrical power system reduce the reliability indexes of the grid, directly harming its performance. For this reason, there is a need for failure prediction to reestablish power in the shortest possible time. Considering an evaluation of the number of failures over time, this paper proposes to perform a failure prediction during the first year of the pandemic in Brazil (2020) to verify the feasibility of using time series forecasting models for fault prediction. The Long Short-Term Memory (LSTM) model will be evaluated to obtain a forecast result that can be used by the electric power utility to organize the maintenance teams. The Wavelet transform shows to be promising in improving the predictive ability of the LSTM, making the Wavelet LSTM model suitable for the study at hand. The results show that the proposed approach has better results regarding the evaluation of the error in prediction and has robustness when a statistical analysis is performed.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated