An essential step in solving any topology optimization problem is determining the sensitivities of the objective function and optimization constraints. Unfortunately, these sensitivities are usually derived and implemented manually. Nontrivial objective functions and constraints, especially with the involvement of material and geometric nonlinearities, need strenuous mathematical derivation, leading to error-prone implementation. Another intriguing approach to finding sensitivities is automatic differentiation. This paper uses the automatic differentiation and adjoint method to find the sensitivities for two multiphysics topology optimization problems: 1) thermoelasticity and 2) piezoelectricity. This approach is not limited to these examples and can be easily extended to other single- or multi-physics topology optimization problems.
Keywords:
Subject: Computer Science and Mathematics - Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.