Preprint
Article

Ensemble of Networks for Multilabel Classification

Altmetrics

Downloads

187

Views

45

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 October 2022

Posted:

17 October 2022

You are already at the latest version

Alerts
Abstract
Multilabel learning goes beyond standard supervised learning models by associating a sample with more than one class label. Among the many techniques developed in the last decade to handle multilabel learning best approaches are those harnessing the power of ensembles and deep learners. This work proposes merging both methods by combining a set of gated recurrent units, temporal convolutional neural networks, and long short-term memory networks trained with variants of the Adam optimization approach. We examine many Adam variants, each fundamentally based on the difference between present and past gradients, with step size adjusted for each parameter. We also combine Incorporating Multiple Clustering Centers and a bootstrap-aggregated decision trees ensemble, which is shown to further boost classification performance. In addition, we provide an ablation study for assessing the performance improvement that each module of our ensemble produces. Multiple experiments on a large set of datasets representing a wide variety of multilabel tasks demonstrate the robustness of our best ensemble, which is shown to outperform the state-of-the-art. The MATLAB code for generating the best ensembles in the experimental section will be made available at https://github.com/LorisNanni.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated