Preprint
Article

Separation of Molar Weight-Distributed Polyethylene Glycols by Reversed-Phase Chromatography – Analysis and Modelling Based on Isocratic Analytical-Scale Investigations

Altmetrics

Downloads

155

Views

71

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 October 2022

Posted:

19 October 2022

You are already at the latest version

Alerts
Abstract
Separation of polyethylene glycols (PEGs) into single homologs by reversed-phase chromatography is investigated experimentally and theoretically. The used core-shell column is shown to achieve baseline separation of PEG homologs up to molar weights of at least 5000 g/mol. A detailed study is performed elucidating the role of the operating conditions temperature, eluent composition, and degree of polymerization of the polymer. Applying Martin's rule yields a simple model for retention times that holds for a wide range of conditions. In combination with relations for column efficiency, the role of the operating conditions is discussed and separations are predicted for analytical-scale chromatography. Finally, the approach is included in an efficient process model based on discrete convolution, which is demonstrated to predict with high accuracy also advanced operating modes with arbitrary injection profiles.
Keywords: 
Subject: Physical Sciences  -   Chemical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated