Preprint
Review

Tissue Injury and Leukocyte Changes in Post-Acute Sequelae of SARS-CoV-2: Review of 2833 Post-acute Patient Outcomes per Immune Dysregulation and Microbial Translocation in Long COVID

Altmetrics

Downloads

343

Views

297

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

19 October 2022

Posted:

24 October 2022

You are already at the latest version

Alerts
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infection. This phenomenon, termed Post-Acute Sequelae of SARS-CoV-2 (PASC) or Long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of auto-antibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include degree of host response (inflammation, NETinjury), residual viral antigen (persistent antigen) and exogenous factors (microbial translocation). Determinants of PASC may be amplified by co-morbidities, age, and sex. Keywords: long COVID, PASC, long haulers, NETosis, T cell, NK cell, DC, neutrophil,
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated