Preprint
Communication

Pioneering Organelle Structural Biology: Golgi Apparatus Dysfunction in Parkinson’s Disease, Neurodevelopmental Disorders, and Cancer

Altmetrics

Downloads

559

Views

315

Comments

1

This version is not peer-reviewed

Submitted:

03 December 2022

Posted:

05 December 2022

You are already at the latest version

Alerts
Abstract
The Golgi apparatus (GA) dysfunctions in Parkinson’s Disease (PD), neurodevelopmental disorders (NDDs), cancer, and organelle structural biology (OSB) can provide insights into therapeutic targets, gene therapy, and drug design. Primary defects and fragmentation within the GA are implicated in a wide range of neurodegenerative diseases. GA defects typically result in mislocation of proteins, accumulation of undegraded proteins, and impaired glycosylation of proteins. Inhibition of vesicular trafficking by α-synuclein (aSyn) may affect the dopamine-producing neurons and neuromodulators. GA regulates apoptosis during pathological mechanisms of neurological diseases and could provide new avenues in treatments through translation research. PD patients bearing the hereditary E46K disease mutation manifest the clinical picture of parkinsonism. How do we provide high resolution nanoimages of the GA during disease to capture dysfunction? Could we visualize the aSyn traffic jam between vesicles in the organelles ER and GA? OSB is emerging as a field as more technology advances and is more accessible. Structural studies of the GA will advance the field of neurological disease forward with an in depth understanding of dysfunction, fragmentation, and defects. Discoveries of the GA in PD, NDDs, and cancer would break new ground and provide translational medicine data of these diseases. Future research could be visualizing high angle annular dark field-STEM (HAADF-STEM) tomograms, cryogenic electron tomography (cryo-ET), multiplex correlative light and electron microscopy (cryo-CLEM), nanobody-assisted tissue immunostaining for volumetric EM (NATIVE) and using soft X-ray tomography (SXT) and computational reconstruction of the GA.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated