We investigate the innovational determinants of “Patent Applications” in Europe. We use data from the European Innovation Scoreboard-EIS of the European Commission for 36 countries in the period 2010-2019. We use Panel Data with Fixed Effects, Panel Data with Random Effects, Pooled OLS, WLS and Dynamic Panel. We found that the variables that have a deeper positive association with “Patent Applications” are “Human Resources” and “Intellectual Assets”, while the variables that show a more intense negative relation with Patent Applications are “Employment Share in Manufacturing” and “Total Entrepreneurial Activity”. A cluster analysis with the k-Means algorithm optimized with the Silhouette Coefficient has been realized. The results show the presence of two clusters. A network analysis with the distance of Manhattan has been performed and we find three different complex network structures. Finally, a comparison is made among eight machine learning algorithms for the prediction of the future value of the “Patent Applications”. We found that PNN-Probabilistic Neural Network is the best performing algorithm. Using PNN the results show that the mean future value of “Patent Applications” in the estimated countries is expected to decrease of -0.1%.
Keywords:
Subject: Business, Economics and Management - Economics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.