Preprint
Article

Implementation of Large Area Diffractive Lens Using Multiple Sub-Aperture Diffractive Lenses and Computational Reconstruction

Altmetrics

Downloads

205

Views

84

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 November 2022

Posted:

15 November 2022

You are already at the latest version

Alerts
Abstract
Direct imaging systems that create an image of an object directly on the sensor in a single step are prone to many constraints as a perfect image is required to be recorded within this step. In designing high resolution direct imaging systems with a diffractive lens, the outermost zone width either reaches the lithography limit or the diffraction limit itself imposing challenges in fabrication. However, if the imaging mode is switched to an indirect one consisting of multiple steps to complete imaging, then different possibilities open up. One such methods is the widely used indirect imaging method with Golay configuration telescopes. In this study, a Golay-like configuration has been adapted to realize a large area diffractive lens with three sub-aperture diffractive lenses. The sub-aperture diffractive lenses are not required to collect light and focus them to a single point as in a direct imaging system but to focus independently on different points within the sensor area. This approach of Large Area Diffractive lens with Integrated Sub-Apertures (LADISA) relaxes the fabrication constraints and allows the sub-aperture diffractive elements to have a larger outermost zone width and smaller area. The diffractive sub-apertures were manufactured using photolithography. The fabricated diffractive element has been implemented in indirect imaging mode using non-linear reconstruction and Lucy-Richardson-Rosen algorithm with synthesized point spread functions. The computational optical experiments revealed an improved optical and computational imaging resolutions compared to previous studies.
Keywords: 
Subject: Physical Sciences  -   Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated