In this work we study the recently developed parametrized partition function formulation and show how we can infer the thermodynamic properties of fermions based on numerical simulation of bosons and distinguishable particles at various temperatures. In particular, we show that in the three dimensional space defined by energy, temperature and the parameter characterizing parametrized partition function, we can map the energies of bosons and distinguishable particles to fermionic energies through constant-energy contours. We apply this idea to both noninteracting and interacting Fermi systems and show it is possible to infer the fermionic energies at all temperatures, thus providing a practical and efficient approach to obtain thermodynamic properties of large fermion systems with numerical simulation. As an example, we present energies for up to 50 noninteracting fermions and up to 20 interacting fermions at all temperatures and show good agreement with the analytical result for noninteracting case.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.