Preprint
Article

Photochemical Degradation of the UV Filter Octyl Methoxy Cinnamate Probed via Laser Interfaced Mass Spectrometry

Altmetrics

Downloads

134

Views

62

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 November 2022

Posted:

23 November 2022

You are already at the latest version

Alerts
Abstract
Octyl methoxycinnamate (OMC) is a common UVA and UVB filter molecule that is widely used is commercial sunscreens. Here, we use gas-phase laser photodissociation spectroscopy to characterize the intrinsic photostability and photodegration products of OMC, by studying the system as its protonated form, i.e. [OMC·H]+. The major photofragments observed have, m/z 179, 161, and 133, corresponding to fragmentation on either side of the of the ether oxygen of the ester group (m/z 179, and 161) or the C-C bond adjacent to the ester carbonyl group. Additional measurements were obtained using higher-energy collisional dissociation mass spectrometry (HCD-MS), to identify fragments which result from breakdown of the vibrationally hot electronic ground state. We found that the m/z 179 and 161 ions are the main fragments produced by this route. Notably, the m/z 133 ion was not observed through HCD-MS, revealing that this product ion is only produced through a photochemical route. Our results demonstrate that UV photoexcitation of OMC is able to access a dissociative excited state surface that uniquely leads to rupture of the C-C bond adjacent to the key ester carbonyl group.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated